ANG II promotes autophagy in podocytes.
نویسندگان
چکیده
Podocytes are an integral and important constituent of the glomerular filtration barrier (GFB) and are exposed to a higher concentrations of ANG II in diseased states; consequently, podocytes may accumulate oxidized proteins and damaged mitochondria. In the present study, we evaluated the effect of ANG II on the podocyte autophagic process, which is likely to be triggered in order to degrade unwanted proteins and damaged organelles. To quantitate the occurrence of autophagy, electron microscopic studies were carried out on control and ANG II-treated conditionally immortalized mouse podocytes (CIMPs). ANG II-treated cells showed a fivefold greater number of autophagosomes/field compared with control cells. This proautophagic effect of ANG II was inhibited by pretreatment with 3-methyladenine, an inhibitor of autophagy. ANG II also enhanced podocyte expression of autophagic genes such as LC3-2 and beclin-1. Since oxidative stress is often associated with the induction of autophagy, we examined the effect of ANG II on podocyte reactive oxygen species (ROS) generation. ANG II enhanced podocyte ROS generation in a time-dependent manner. To determine whether there is a causal relationship between ANG II-induced oxidative stress and induction of autophagy, we evaluated the effect of antioxidants on ANG II-induced autophagy. As expected, the proautophagic effect of ANG II was inhibited by antioxidants. We conclude that ANG II promotes podocyte autophagy through the generation of ROS.
منابع مشابه
Interferon-γ signaling inhibition ameliorates angiotensin II-induced cardiac damage.
Angiotensin (Ang) II induces vascular injury in part by activating innate and adaptive immunity; however, the mechanisms are unclear. We investigated the role of interferon (IFN)-γ and interleukin (IL)-23 signaling. We infused Ang II into IFN-γ receptor (IFN-γR) knockout mice and wild-type controls, as well as into mice treated with neutralizing antibodies against IL-23 receptor and IL-17A. Ang...
متن کاملThe role of autophagy in angiotensin II-induced pathological cardiac hypertrophy.
Pathological cardiac hypertrophy is associated with nearly all forms of heart failure. It develops in response to disorders such as coronary artery disease, hypertension and myocardial infarction. Angiotensin II (Ang II) has direct effects on the myocardium and promotes hypertension. Chronic elevation of Ang II can lead to pathological cardiac hypertrophy and cardiac failure. Autophagy is an im...
متن کاملAngiotensin II stimulates the synthesis of vascular endothelial growth factor through the p38 mitogen activated protein kinase pathway in cultured mouse podocytes.
Angiotensin II (Ang-II) and vascular endothelial growth factor (VEGF) have an important role in the pathogenesis of diabetic nephropathy, but the signaling cascade of VEGF regulation in response to Ang-II in podocytes is largely unknown. In these experiments, we looked at the effect of Ang-II on the production of VEGF, and investigated whether VEGF production depends on the p38 mitogen activate...
متن کاملAngiotensin II Modulates p130Cas of Podocytes by the Suppression of AMP-Activated Protein Kinase
Angiotensin II (Ang II) induces the pathological process of vascular structures, including renal glomeruli by hemodynamic and nonhemodynamic direct effects. In kidneys, Ang II plays an important role in the development of proteinuria by the modification of podocyte molecules. We have previously found that Ang II suppressed podocyte AMP-activated protein kinase (AMPK) via Ang II type 1 receptor ...
متن کاملAutophagy by podocytes in renal biopsy specimens.
Autophagy, a process of bulk protein degradation and organelle turnover, is induced under starvation conditions in yeast and plays an important role in developmental processes and human diseases. Autophagy is a nonapoptotic form of programmed cell death. Disturbances in autophagy and programmed cell death may lead to cancer and several degenerative diseases in humans. During the routine ultrast...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 299 2 شماره
صفحات -
تاریخ انتشار 2010